SURF feature detector in CSharp

From EMGU
Jump to navigation Jump to search

This project is part of the Emgu.CV.Example solution

System Requirement

Component Requirement Detail
Emgu CV Version 2.4.0
Operation System Cross Platform

Source Code

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
using Emgu.CV.GPU;

namespace SURFFeatureExample
{
   public static class DrawMatches
   {
      /// <summary>
      /// Draw the model image and observed image, the matched features and homography projection.
      /// </summary>
      /// <param name="modelImage">The model image</param>
      /// <param name="observedImage">The observed image</param>
      /// <param name="matchTime">The output total time for computing the homography matrix.</param>
      /// <returns>The model image and observed image, the matched features and homography projection.</returns>
      public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime)
      {
         Stopwatch watch;
         HomographyMatrix homography = null;

         SURFDetector surfCPU = new SURFDetector(500, false);
         VectorOfKeyPoint modelKeyPoints;
         VectorOfKeyPoint observedKeyPoints;
         Matrix<int> indices;

         Matrix<byte> mask;
         int k = 2;
         double uniquenessThreshold = 0.8;
         if (GpuInvoke.HasCuda)
         {
            GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
            using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
            //extract features from the object image
            using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
            {
               modelKeyPoints = new VectorOfKeyPoint();
               surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
               watch = Stopwatch.StartNew();

               // extract features from the observed image
               using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
               using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
               using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
               using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
               using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
               using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
               using (Stream stream = new Stream())
               {
                  matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
                  indices = new Matrix<int>(gpuMatchIndices.Size);
                  mask = new Matrix<byte>(gpuMask.Size);

                  //gpu implementation of voteForUniquess
                  using (GpuMat<float> col0 = gpuMatchDist.Col(0))
                  using (GpuMat<float> col1 = gpuMatchDist.Col(1))
                  {
                     GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
                     GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
                  }

                  observedKeyPoints = new VectorOfKeyPoint();
                  surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);

                  //wait for the stream to complete its tasks
                  //We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
                  stream.WaitForCompletion();

                  gpuMask.Download(mask);
                  gpuMatchIndices.Download(indices);

                  if (GpuInvoke.CountNonZero(gpuMask) >= 4)
                  {
                     int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
                     if (nonZeroCount >= 4)
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
                  }

                  watch.Stop();
               }
            }
         } else
         {
            //extract features from the object image
            modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
            Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);

            watch = Stopwatch.StartNew();

            // extract features from the observed image
            observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
            Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
            BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
            matcher.Add(modelDescriptors);

            indices = new Matrix<int>(observedDescriptors.Rows, k);
            using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
            {
               matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
               mask = new Matrix<byte>(dist.Rows, 1);
               mask.SetValue(255);
               Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
            }

            int nonZeroCount = CvInvoke.cvCountNonZero(mask);
            if (nonZeroCount >= 4)
            {
               nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
               if (nonZeroCount >= 4)
                  homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
            }

            watch.Stop();
         }

         //Draw the matched keypoints
         Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
            indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);

         #region draw the projected region on the image
         if (homography != null)
         {  //draw a rectangle along the projected model
            Rectangle rect = modelImage.ROI;
            PointF[] pts = new PointF[] { 
               new PointF(rect.Left, rect.Bottom),
               new PointF(rect.Right, rect.Bottom),
               new PointF(rect.Right, rect.Top),
               new PointF(rect.Left, rect.Top)};
            homography.ProjectPoints(pts);

            result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
         }
         #endregion

         matchTime = watch.ElapsedMilliseconds;

         return result;
      }
   }
}

Performance Comparison

CPU GPU Emgu CV Package Execution Time (millisecond)
Core i7-2630QM@2.0Ghz NVidia GeForce GTX560M libemgucv-windows-x64-2.4.0.1714 87
Core i7-2630QM@2.0Ghz NVidia GeForce GTX560M libemgucv-windows-x64-2.4.0.1714 192
Google Nexus S (Android) libemgucv-android-2.4.0.1717_beta 9990

Result

  • Windows

  • Android (Nexus S)