SURF feature detector in CSharp: Difference between revisions

From EMGU
Jump to navigation Jump to search
mNo edit summary
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[image:SURFExample.GIF]]
<font color=green>'''This project is part of the Emgu.CV.Example solution'''</font>


== System Requirement ==
{| style="text-align:center" border="1px" cellpadding="10" cellspacing="0"
!Component || Requirement || Detail
|-
|Emgu CV || [[Version_History#Emgu.CV-2.4.0|Version 2.4.0]] + || 
|-
|Operation System || Cross Platform ||
|}
== Source Code ==
=== Emgu CV 3.x ===
<div class="toccolours mw-collapsible mw-collapsed">
Click to view source code
<div class="mw-collapsible-content">
<source lang="csharp">
<source lang="csharp">
using System;
using System;
using System.Collections.Generic;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Diagnostics;
using System.Drawing;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV;
using Emgu.CV.UI;
using Emgu.CV.CvEnum;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
#if !__IOS__
using Emgu.CV.Cuda;
#endif
using Emgu.CV.XFeatures2D;


namespace SURFFeatureExample
namespace SURFFeatureExample
{
{
   static class Program
   public static class DrawMatches
   {
   {
      public static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
      {
        int k = 2;
        double uniquenessThreshold = 0.8;
        double hessianThresh = 300;
       
        Stopwatch watch;
        homography = null;
        modelKeyPoints = new VectorOfKeyPoint();
        observedKeyPoints = new VectorOfKeyPoint();
        #if !__IOS__
        if ( CudaInvoke.HasCuda)
        {
            CudaSURF surfCuda = new CudaSURF((float) hessianThresh);
            using (GpuMat gpuModelImage = new GpuMat(modelImage))
            //extract features from the object image
            using (GpuMat gpuModelKeyPoints = surfCuda.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat gpuModelDescriptors = surfCuda.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (CudaBFMatcher matcher = new CudaBFMatcher(DistanceType.L2))
            {
              surfCuda.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
              watch = Stopwatch.StartNew();
              // extract features from the observed image
              using (GpuMat gpuObservedImage = new GpuMat(observedImage))
              using (GpuMat gpuObservedKeyPoints = surfCuda.DetectKeyPointsRaw(gpuObservedImage, null))
              using (GpuMat gpuObservedDescriptors = surfCuda.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
              //using (GpuMat tmp = new GpuMat())
              //using (Stream stream = new Stream())
              {
                  matcher.KnnMatch(gpuObservedDescriptors, gpuModelDescriptors, matches, k);
                  surfCuda.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
                  mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
                  mask.SetTo(new MCvScalar(255));
                  Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
                  int nonZeroCount = CvInvoke.CountNonZero(mask);
                  if (nonZeroCount >= 4)
                  {
                    nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                        matches, mask, 1.5, 20);
                    if (nonZeroCount >= 4)
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                          observedKeyPoints, matches, mask, 2);
                  }
              }
                  watch.Stop();
              }
            }
        else
        #endif
        {
            using (UMat uModelImage = modelImage.ToUMat(AccessType.Read))
            using (UMat uObservedImage = observedImage.ToUMat(AccessType.Read))
            {
              SURF surfCPU = new SURF(hessianThresh);
              //extract features from the object image
              UMat modelDescriptors = new UMat();
              surfCPU.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);
              watch = Stopwatch.StartNew();
              // extract features from the observed image
              UMat observedDescriptors = new UMat();
              surfCPU.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
              BFMatcher matcher = new BFMatcher(DistanceType.L2);
              matcher.Add(modelDescriptors);
              matcher.KnnMatch(observedDescriptors, matches, k, null);
              mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
              mask.SetTo(new MCvScalar(255));
              Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
              int nonZeroCount = CvInvoke.CountNonZero(mask);
              if (nonZeroCount >= 4)
              {
                  nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                    matches, mask, 1.5, 20);
                  if (nonZeroCount >= 4)
                    homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                        observedKeyPoints, matches, mask, 2);
              }
              watch.Stop();
            }
        }
        matchTime = watch.ElapsedMilliseconds;
      }
       /// <summary>
       /// <summary>
       /// The main entry point for the application.
       /// Draw the model image and observed image, the matched features and homography projection.
       /// </summary>
       /// </summary>
       [STAThread]
       /// <param name="modelImage">The model image</param>
       static void Main()
       /// <param name="observedImage">The observed image</param>
      /// <param name="matchTime">The output total time for computing the homography matrix.</param>
      /// <returns>The model image and observed image, the matched features and homography projection.</returns>
      public static Mat Draw(Mat modelImage, Mat observedImage, out long matchTime)
       {
       {
         Application.EnableVisualStyles();
         Mat homography;
        Application.SetCompatibleTextRenderingDefault(false);
        VectorOfKeyPoint modelKeyPoints;
        Run();
        VectorOfKeyPoint observedKeyPoints;
        using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
        {
            Mat mask;
            FindMatch(modelImage, observedImage, out matchTime, out modelKeyPoints, out observedKeyPoints, matches,
              out mask, out homography);
 
            //Draw the matched keypoints
            Mat result = new Mat();
            Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
              matches, result, new MCvScalar(255, 255, 255), new MCvScalar(255, 255, 255), mask);
 
            #region draw the projected region on the image
 
            if (homography != null)
            {
              //draw a rectangle along the projected model
              Rectangle rect = new Rectangle(Point.Empty, modelImage.Size);
              PointF[] pts = new PointF[]
              {
                  new PointF(rect.Left, rect.Bottom),
                  new PointF(rect.Right, rect.Bottom),
                  new PointF(rect.Right, rect.Top),
                  new PointF(rect.Left, rect.Top)
              };
              pts = CvInvoke.PerspectiveTransform(pts, homography);
 
              Point[] points = Array.ConvertAll<PointF, Point>(pts, Point.Round);
              using (VectorOfPoint vp = new VectorOfPoint(points))
              {
                  CvInvoke.Polylines(result, vp, true, new MCvScalar(255, 0, 0, 255), 5);
              }
             
            }
 
            #endregion
 
            return result;
 
        }
       }
       }
  }
}
</source>
</div>
</div>


       static void Run()
=== Emgu CV 2.x ===
<div class="toccolours mw-collapsible mw-collapsed">
Click to view source code
<div class="mw-collapsible-content">
<source lang="csharp">
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
using Emgu.CV.GPU;
 
namespace SURFFeatureExample
{
  public static class DrawMatches
  {
      /// <summary>
      /// Draw the model image and observed image, the matched features and homography projection.
      /// </summary>
      /// <param name="modelImage">The model image</param>
      /// <param name="observedImage">The observed image</param>
      /// <param name="matchTime">The output total time for computing the homography matrix.</param>
      /// <returns>The model image and observed image, the matched features and homography projection.</returns>
       public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime)
       {
       {
         Image<Gray, Byte> objectImage = new Image<Gray, byte>("box.png");
         Stopwatch watch;
         //objectImage = objectImage.Resize(400, 400, true);
         HomographyMatrix homography = null;
        DateTime t1 = DateTime.Now;
 
        MCvSURFParams param1 = new MCvSURFParams(500, false);
         SURFDetector surfCPU = new SURFDetector(500, false);
        SURFFeature[] objectFeatures = objectImage.ExtractSURF(ref param1);
         VectorOfKeyPoint modelKeyPoints;
       
         VectorOfKeyPoint observedKeyPoints;
         Image<Gray, Byte> image = new Image<Gray, byte>("box_in_scene.png");
         Matrix<int> indices;
        //image = image.Resize(400, 400, true);
        t1 = DateTime.Now;
        MCvSURFParams param2 = new MCvSURFParams(500, false);
         SURFFeature[] imageFeatures = image.ExtractSURF(ref param2);
       
        Image<Gray, Byte> res = new Image<Gray, byte>(Math.Max(objectImage.Width, image.Width), objectImage.Height + image.Height);
        res.ROI = new Rectangle<double>(new MCvRect(0, 0, objectImage.Width, objectImage.Height));
         objectImage.Copy(res, null);
         res.ROI = new Rectangle<double>(new MCvRect(0, objectImage.Height, image.Width, image.Height) );
        image.Copy(res, null);
        res.ROI = null;


         t1 = DateTime.Now;
         Matrix<byte> mask;
         List<Point2D<float>> list1 = new List<Point2D<float>>();
         int k = 2;
         List<Point2D<float>> list2 = new List<Point2D<float>>();
         double uniquenessThreshold = 0.8;
         foreach (SURFFeature f in objectFeatures)
         if (GpuInvoke.HasCuda)
         {
         {
             double[] distance = Array.ConvertAll<SURFFeature, double>(imageFeatures,
             GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
               delegate(SURFFeature imgFeature)
            using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
            //extract features from the object image
            using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
            {
              modelKeyPoints = new VectorOfKeyPoint();
              surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
              watch = Stopwatch.StartNew();
 
              // extract features from the observed image
              using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
              using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
              using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
              using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
              using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
               using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
              using (Stream stream = new Stream())
               {
               {
                   if (imgFeature.Point.laplacian != f.Point.laplacian)
                   matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
                     return -1;
                  indices = new Matrix<int>(gpuMatchIndices.Size);
                  return CvInvoke.cvNorm(imgFeature.Descriptor, f.Descriptor, Emgu.CV.CvEnum.NORM_TYPE.CV_L2, IntPtr.Zero);
                  mask = new Matrix<byte>(gpuMask.Size);
              });
 
                  //gpu implementation of voteForUniquess
                  using (GpuMat<float> col0 = gpuMatchDist.Col(0))
                  using (GpuMat<float> col1 = gpuMatchDist.Col(1))
                  {
                     GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
                    GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
                  }
 
                  observedKeyPoints = new VectorOfKeyPoint();
                  surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
 
                  //wait for the stream to complete its tasks
                  //We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
                  stream.WaitForCompletion();


            int closestIndex = 0;
                  gpuMask.Download(mask);
            int secondClosestIndex = 0;
                  gpuMatchIndices.Download(indices);


            for (int i = 0; i < distance.Length; i++)
                  if (GpuInvoke.CountNonZero(gpuMask) >= 4)
            {
              if (distance[i] >= 0)
              {
                  if (distance[i] < distance[closestIndex] || distance[closestIndex] == -1)
                   {
                   {
                     secondClosestIndex = closestIndex;
                     int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
                     closestIndex = i;
                     if (nonZeroCount >= 4)
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
                   }
                   }
                  watch.Stop();
               }
               }
             }
             }
             if (distance[closestIndex] < 0.6 * distance[secondClosestIndex])
        } else
             { //If this is almost a unique match
        {
              Point2D<float> p1 = new Point2D<float>((float)f.Point.pt.x, (float)f.Point.pt.y);
            //extract features from the object image
              SURFFeature match = imageFeatures[closestIndex];
             modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
              Point2D<float> p2 = new Point2D<float>((float)match.Point.pt.x, (float)match.Point.pt.y);
            Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
               list1.Add(p1);
 
               list2.Add(p2);
            watch = Stopwatch.StartNew();
 
             // extract features from the observed image
            observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
            Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
            BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
            matcher.Add(modelDescriptors);
 
            indices = new Matrix<int>(observedDescriptors.Rows, k);
            using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
            {
              matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
              mask = new Matrix<byte>(dist.Rows, 1);
               mask.SetValue(255);
               Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
            }


              Point2D<float> p = p2.Convert<float>();
            int nonZeroCount = CvInvoke.cvCountNonZero(mask);
               p.Y += objectImage.Height;
            if (nonZeroCount >= 4)
               res.Draw(new LineSegment2D<int>(p1.Convert<int>(), p.Convert<int>()), new Gray(0), 1);
            {
               nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
               if (nonZeroCount >= 4)
                  homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
             }
             }
            watch.Stop();
         }
         }


         Matrix<float> homographyMatrix = CameraCalibration.FindHomography(list1.ToArray(), list2.ToArray(), HOMOGRAPHY_METHOD.RANSAC, 3);
         //Draw the matched keypoints
        Rectangle<double> rect = objectImage.ROI;
        Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
            indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);


         Point2D<double>[] pts = new Point2D<double>[]
         #region draw the projected region on the image
        {
        if (homography != null)
            HomographyTransform( rect.BottomLeft, homographyMatrix ),
        {  //draw a rectangle along the projected model
            HomographyTransform( rect.BottomRight, homographyMatrix ),
            Rectangle rect = modelImage.ROI;
            HomographyTransform( rect.TopRight, homographyMatrix ),
            PointF[] pts = new PointF[] {  
            HomographyTransform( rect.TopLeft, homographyMatrix )
              new PointF(rect.Left, rect.Bottom),
        };
              new PointF(rect.Right, rect.Bottom),
              new PointF(rect.Right, rect.Top),
              new PointF(rect.Left, rect.Top)};
            homography.ProjectPoints(pts);


        foreach (Point2D<double> p in pts)
            result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
        {
            p.Y += objectImage.Height;
         }
         }
        #endregion


         res.DrawPolyline(pts, true, new Gray(255.0), 5);
         matchTime = watch.ElapsedMilliseconds;


        Application.Run(new ImageViewer(res));
         return result;
      }
 
      private static Point2D<double> HomographyTransform(Point2D<double> p, Matrix<float> homographyMatrix)
      {
        Matrix<float> pMat = new Matrix<float>(p.Convert<float>().Resize(3).Coordinate);
        pMat[2, 0] = 1.0f;
        pMat = homographyMatrix * pMat;
        pMat = pMat / (double)pMat[2, 0];
         return new Point2D<double>((double)pMat[0, 0], (double)pMat[1, 0]);
       }
       }
   }
   }
}
}
</source>
</source>
</div>
</div>
== Performance Comparison ==
{| style="text-align:center" border="1px" cellpadding="10" cellspacing="0"
!CPU|| GPU || Emgu CV Package || Execution Time (millisecond)
|-
| <del>Core i7-2630QM@2.0Ghz</del> || '''NVidia GeForce GTX560M''' || libemgucv-windows-x64-2.4.0.1714 || 87
|-
| '''Core i7-2630QM@2.0Ghz''' || <del>NVidia GeForce GTX560M</del> || libemgucv-windows-x64-2.4.0.1714 || 192
|-
| LG G Flex 2 (Android) || || libemgucv-android-3.1.0.2298 || 432
|}
== Result ==
*Windows
[[image:SURFExample.png]]
*Android (Nexus S)
[[File:MonoAndroidSURFFeatureResultNexusS.jpg | 500px]]

Latest revision as of 15:10, 20 February 2016

This project is part of the Emgu.CV.Example solution

System Requirement

Component Requirement Detail
Emgu CV Version 2.4.0 +
Operation System Cross Platform

Source Code

Emgu CV 3.x

Click to view source code

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
#if !__IOS__
using Emgu.CV.Cuda;
#endif
using Emgu.CV.XFeatures2D;

namespace SURFFeatureExample
{
   public static class DrawMatches
   {
      public static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
      {
         int k = 2;
         double uniquenessThreshold = 0.8;
         double hessianThresh = 300;
         
         Stopwatch watch;
         homography = null;

         modelKeyPoints = new VectorOfKeyPoint();
         observedKeyPoints = new VectorOfKeyPoint();

         #if !__IOS__
         if ( CudaInvoke.HasCuda)
         {
            CudaSURF surfCuda = new CudaSURF((float) hessianThresh);
            using (GpuMat gpuModelImage = new GpuMat(modelImage))
            //extract features from the object image
            using (GpuMat gpuModelKeyPoints = surfCuda.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat gpuModelDescriptors = surfCuda.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (CudaBFMatcher matcher = new CudaBFMatcher(DistanceType.L2))
            {
               surfCuda.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
               watch = Stopwatch.StartNew();

               // extract features from the observed image
               using (GpuMat gpuObservedImage = new GpuMat(observedImage))
               using (GpuMat gpuObservedKeyPoints = surfCuda.DetectKeyPointsRaw(gpuObservedImage, null))
               using (GpuMat gpuObservedDescriptors = surfCuda.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
               //using (GpuMat tmp = new GpuMat())
               //using (Stream stream = new Stream())
               {
                  matcher.KnnMatch(gpuObservedDescriptors, gpuModelDescriptors, matches, k);

                  surfCuda.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);

                  mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
                  mask.SetTo(new MCvScalar(255));
                  Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);

                  int nonZeroCount = CvInvoke.CountNonZero(mask);
                  if (nonZeroCount >= 4)
                  {
                     nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                        matches, mask, 1.5, 20);
                     if (nonZeroCount >= 4)
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                           observedKeyPoints, matches, mask, 2);
                  }
               }
                  watch.Stop();
               }
            }
         else
         #endif
         {
            using (UMat uModelImage = modelImage.ToUMat(AccessType.Read))
            using (UMat uObservedImage = observedImage.ToUMat(AccessType.Read))
            {
               SURF surfCPU = new SURF(hessianThresh);
               //extract features from the object image
               UMat modelDescriptors = new UMat();
               surfCPU.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);

               watch = Stopwatch.StartNew();

               // extract features from the observed image
               UMat observedDescriptors = new UMat();
               surfCPU.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
               BFMatcher matcher = new BFMatcher(DistanceType.L2);
               matcher.Add(modelDescriptors);

               matcher.KnnMatch(observedDescriptors, matches, k, null);
               mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
               mask.SetTo(new MCvScalar(255));
               Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);

               int nonZeroCount = CvInvoke.CountNonZero(mask);
               if (nonZeroCount >= 4)
               {
                  nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                     matches, mask, 1.5, 20);
                  if (nonZeroCount >= 4)
                     homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                        observedKeyPoints, matches, mask, 2);
               }

               watch.Stop();
            }
         }
         matchTime = watch.ElapsedMilliseconds;
      }

      /// <summary>
      /// Draw the model image and observed image, the matched features and homography projection.
      /// </summary>
      /// <param name="modelImage">The model image</param>
      /// <param name="observedImage">The observed image</param>
      /// <param name="matchTime">The output total time for computing the homography matrix.</param>
      /// <returns>The model image and observed image, the matched features and homography projection.</returns>
      public static Mat Draw(Mat modelImage, Mat observedImage, out long matchTime)
      {
         Mat homography;
         VectorOfKeyPoint modelKeyPoints;
         VectorOfKeyPoint observedKeyPoints;
         using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
         {
            Mat mask;
            FindMatch(modelImage, observedImage, out matchTime, out modelKeyPoints, out observedKeyPoints, matches,
               out mask, out homography);

            //Draw the matched keypoints
            Mat result = new Mat();
            Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
               matches, result, new MCvScalar(255, 255, 255), new MCvScalar(255, 255, 255), mask);

            #region draw the projected region on the image

            if (homography != null)
            {
               //draw a rectangle along the projected model
               Rectangle rect = new Rectangle(Point.Empty, modelImage.Size);
               PointF[] pts = new PointF[]
               {
                  new PointF(rect.Left, rect.Bottom),
                  new PointF(rect.Right, rect.Bottom),
                  new PointF(rect.Right, rect.Top),
                  new PointF(rect.Left, rect.Top)
               };
               pts = CvInvoke.PerspectiveTransform(pts, homography);

               Point[] points = Array.ConvertAll<PointF, Point>(pts, Point.Round);
               using (VectorOfPoint vp = new VectorOfPoint(points))
               {
                  CvInvoke.Polylines(result, vp, true, new MCvScalar(255, 0, 0, 255), 5);
               }
               
            }

            #endregion

            return result;

         }
      }
   }
}

Emgu CV 2.x

Click to view source code

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
using Emgu.CV.GPU;

namespace SURFFeatureExample
{
   public static class DrawMatches
   {
      /// <summary>
      /// Draw the model image and observed image, the matched features and homography projection.
      /// </summary>
      /// <param name="modelImage">The model image</param>
      /// <param name="observedImage">The observed image</param>
      /// <param name="matchTime">The output total time for computing the homography matrix.</param>
      /// <returns>The model image and observed image, the matched features and homography projection.</returns>
      public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime)
      {
         Stopwatch watch;
         HomographyMatrix homography = null;

         SURFDetector surfCPU = new SURFDetector(500, false);
         VectorOfKeyPoint modelKeyPoints;
         VectorOfKeyPoint observedKeyPoints;
         Matrix<int> indices;

         Matrix<byte> mask;
         int k = 2;
         double uniquenessThreshold = 0.8;
         if (GpuInvoke.HasCuda)
         {
            GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
            using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
            //extract features from the object image
            using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
            {
               modelKeyPoints = new VectorOfKeyPoint();
               surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
               watch = Stopwatch.StartNew();

               // extract features from the observed image
               using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
               using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
               using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
               using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
               using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
               using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
               using (Stream stream = new Stream())
               {
                  matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
                  indices = new Matrix<int>(gpuMatchIndices.Size);
                  mask = new Matrix<byte>(gpuMask.Size);

                  //gpu implementation of voteForUniquess
                  using (GpuMat<float> col0 = gpuMatchDist.Col(0))
                  using (GpuMat<float> col1 = gpuMatchDist.Col(1))
                  {
                     GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
                     GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
                  }

                  observedKeyPoints = new VectorOfKeyPoint();
                  surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);

                  //wait for the stream to complete its tasks
                  //We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
                  stream.WaitForCompletion();

                  gpuMask.Download(mask);
                  gpuMatchIndices.Download(indices);

                  if (GpuInvoke.CountNonZero(gpuMask) >= 4)
                  {
                     int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
                     if (nonZeroCount >= 4)
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
                  }

                  watch.Stop();
               }
            }
         } else
         {
            //extract features from the object image
            modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
            Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);

            watch = Stopwatch.StartNew();

            // extract features from the observed image
            observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
            Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
            BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
            matcher.Add(modelDescriptors);

            indices = new Matrix<int>(observedDescriptors.Rows, k);
            using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
            {
               matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
               mask = new Matrix<byte>(dist.Rows, 1);
               mask.SetValue(255);
               Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
            }

            int nonZeroCount = CvInvoke.cvCountNonZero(mask);
            if (nonZeroCount >= 4)
            {
               nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
               if (nonZeroCount >= 4)
                  homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
            }

            watch.Stop();
         }

         //Draw the matched keypoints
         Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
            indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);

         #region draw the projected region on the image
         if (homography != null)
         {  //draw a rectangle along the projected model
            Rectangle rect = modelImage.ROI;
            PointF[] pts = new PointF[] { 
               new PointF(rect.Left, rect.Bottom),
               new PointF(rect.Right, rect.Bottom),
               new PointF(rect.Right, rect.Top),
               new PointF(rect.Left, rect.Top)};
            homography.ProjectPoints(pts);

            result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
         }
         #endregion

         matchTime = watch.ElapsedMilliseconds;

         return result;
      }
   }
}

Performance Comparison

CPU GPU Emgu CV Package Execution Time (millisecond)
Core i7-2630QM@2.0Ghz NVidia GeForce GTX560M libemgucv-windows-x64-2.4.0.1714 87
Core i7-2630QM@2.0Ghz NVidia GeForce GTX560M libemgucv-windows-x64-2.4.0.1714 192
LG G Flex 2 (Android) libemgucv-android-3.1.0.2298 432

Result

  • Windows

  • Android (Nexus S)